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Pattern formations in populations of “pulsating particles” which can autonomously vary their volumes were
investigated. It was found that clusters of pulsating particles whose pulsation frequencies depend on the
number of other particles in the vicinity form the following dynamical network structures: �i� void type
networks exhibiting large voids, and �ii� branching type networks consisting of individual branches. Such
global structures are formed through the annihilation and creation of local structures in the particle populations
induced by tug-of-war-like interactions among them.

DOI: 10.1103/PhysRevE.76.055101 PACS number�s�: 82.40.Ck, 05.45.Xt, 87.18.Hf, 82.40.Bj

Dynamical systems with many interacting nonlinear ele-
ments have been studied extensively. Such coupled dynami-
cal systems often display a rich variety of spatial-temporal
patterns by the interplay between the internal dynamics of
the individual elements and their interactions. Several as-
pects of such pattern formation in systems where the ele-
ments are coupled spatially or construct several types of ran-
dom networks have been uncovered recently �1–7�.

In some complex systems, like biological systems, societ-
ies, etc., not only the internal state of each element but also
the coupling properties among the elements vary temporally,
in general. In several types of cell populations like bacteria
populations, or brains or other internal organs in the multi-
cellular organisms �8–11�, each element �cell� has some in-
ternal degrees of freedom, such as chemical concentrations,
shape, etc. In these systems, the couplings among the cells
naturally vary temporally due to migration or deformation.

In order to consider such complex situations, a variety of
coupled oscillator systems in which oscillator-oscillator con-
nections vary temporally have been investigated �3,12–14�.
One such system proposed populations of the oscillators
which can move in space �3,14–18�. General aspects of such
systems have been studied through abstract models in which
the internal dynamics of each element are modeled by a cha-
otic or limit-cycle oscillator.

Such “mobile oscillator” models can be considered as
metamodels of cell populations interacting through a chemi-
cal concentration field �8,9�. In recent models, however, the
effects of the excluded volume, the shape, and their temporal
variations in each cell have been mostly neglected. On the
other hand, it is natural that these effects should play impor-
tant roles in the pattern dynamics of cell aggregations, like
the morphogenesis of multicellular systems.

In this paper, we study pattern formations in populations
of mobile pulsating particles which have finite volumes and
which can vary their volumes autonomously. Here, a “pulsa-
tion” is considered as one of the simplest descriptions of the
effect of the autonomous shape variation as a result of the
change in the internal states of cells, proteins, etc. �8–10�. In
the following, we show that such simple systems can form
various novel patterns, for instance, void type and branching
type network patterns.

We introduce a model of pulsating particles in two-
dimensional space. Of course, there exist many possible
types of pulsating particle populations. In this paper, we con-

sider an example dynamical system, defined by the following
assumptions, with which we can obtain various interesting
pattern formations.

First, we assume that each particle has a finite volume and
that there is short-range attraction and hard core repulsion
between two particles. Second, we assume that the frequency
of the volume oscillation �pulsation� of a particle increases as
the number of other particles in the vicinity of that particle
increases. This dynamic rule is inspired by the observed ef-
fects of reaction-diffusion through the gap junction of living
cells �8,10,11� and oscillations induced by the plasma
streaming of Physarum plasmodium �19,20�.

The time evolution of the center of mass of each particle
is given by

xi
˙ = − �i��

i�j

V�ri + rj − �xi − xj��� , �1�

where xi and ri indicate the position and the radius of the ith
particle, and V indicates the two-body interaction potential,
given by

V�y� = ��y��− cy2 + dy4� . �2�

Here, ��y� is a step function. Figure 1�b� plots
V�ri+rj − �xi−xj � � as a function of �xi−xj�.

Now, we define the pulsation phase of the ith particle Wi
as that which gives ri:
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FIG. 1. �a� Illustration of pulsating particle, and �b� two-body
interaction potential V as a function of �xi−xj�.
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ri = ro�1 − A cos�2�Wi�� . �3�

Here, ro and Aro are the standard radius and the amplitude of
the variation of the radius. We set A to be sufficiently smaller
than 1. According to the second assumption, we assume the
time evolution of Wi to be

Ẇi = �o��
i�j

����F��� − K sin�2�Wi�� . �4�

Here, �=ri+rj − �xi−xj�. In the following, we employ
F���=1 for simplicity. Qualitatively, the same results may
appear if F��� is an increasing function of �.

Now, we simulate the system using this model for several
values of �o and K and fixed values ro=1.5, A=0.15, c=8,
and d=16. The characteristics of this model are qualitatively
independent of these parameters. As the initial conditions,
the centers of the particles are set to form a square and their
radii are set to uniform random numbers between ro�1−A�
and ro�1+A� �see Fig. 3�.

Figure 2 shows a phase diagram of typical patterns as a
function of �o and K �400 particles�. The sample snapshots
are shown for cases with K=2, 3.5, 4.5, and 5 and
�o=0.01, 0.03, and 0.1. Here, each circle represents one par-
ticle and the radius of each circle indicates that of each par-
ticle. This system exhibits the following four types of pattern
formations: �i� When K is large, a small cluster of particles
with some small voids appears. The shape of this cluster
slightly varies from that at the initial condition �square�.
�ii� When K has an intermediate value, a large cluster of
particles with voids larger than the particles appears. �iii�

When K is small and �o is not so small, one or more large
clusters of particles with some branches appears. �iv� When
both K and �o are small, a small cluster exhibiting chaotic
shape variation appears.
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FIG. 2. Phase diagram with snapshots of the spatial structures of
the system, for several values of �o and K.
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FIG. 3. Typical temporal evolutions of the void type network
and the branching type network.
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FIG. 4. �Color online� Typical temporal evolutions of L for the
void type network �blue solid curve� and the branching type net-
work �red dashed curve�.
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Thus the various types of patterns are formed by the in-
terplay between migration and pulsation of the particles. In
particular, the networklike patterns in �ii� and �iii� are often
observed in many biological systems �8,9,19,20�. We name
the pattern shown in �ii� a void type network and that in �iii�
a branching type network, after their shapes.

Now, the dynamical aspects of the void type networks and
the branching type networks are considered. Figure 3
shows typical temporal evolutions of the system for large K
��o=0.03 and K=4.5� and those for small K ��o=0.1 and
K=3.0�, and Fig. 4 shows typical temporal evolutions of the
distance between two sample particles L for these cases. As
shown in Fig. 3, the void type networks are formed at an
early stage in both cases. If K is large, such void type net-
works are sustained, as seen in Fig. 3 �left�. In such cases, the
temporal evolution of L �blue solid curve in Fig. 4� eventu-
ally becomes periodic. This means that the structures are
stable.

On the other hand, if K is small, the void type networks
are broken and the branching type networks appear. In such
cases, the temporal evolution of L is nonstationary, as shown
in Fig. 4 �red dashed curve�. This indicates that the shape of
each branching type network is not stable but varies gradu-
ally, as shown in Fig. 3 �right�.

Next, we focus on the formation processes of the void
type networks and the branching type networks in order to
consider the mechanisms of these pattern formations. In this
model, each particle starts to pulsate when the number of
other particles in its vicinity becomes larger than K, as given
in Eq. �4�. In the following, we mainly focus on the K de-
pendency of the pattern dynamics.

If K�6, no particles can pulsate because the number of
other particles in the vicinity of each particle cannot be
greater than 6 in two dimensional space. On the other hand,
when 4�K�6, hexagonal structures �Fig. 5�a�� are not sta-
tionary because the particles at the interior pulsate. However,
rodlike structures �Fig. 5�b�� remain stable because the num-
ber of other particles in the vicinity of each particle is 4.
Then, some voids can emerge.

In such situations, some junctions of the rods �Fig. 5�c��
appear. Here, the particle at the interior of each junction pul-
sates. Then, these junctions pulsate and interact with each
other, that is, pushing or pulling, through the rods. By such a
tug-of-war-like interaction among the junctions, some of
them often move along the rods or disappear, causing growth
of the voids. When the pulsation phases of the surviving
junctions are balanced, the structures formed, namely, the
void type networks, becomes stable and sustain their periodic
oscillation.

Next, we consider cases with K�4, where the system
shows more complex motions than the cases above. In this
case, not only the particles at the interior of the junctions but
also the other particles constructing the junctions or the rods
can pulsate. Here, it is notable that the pulsation frequencies
of the particles at the interior and those at the surface of these
structures are different because the number of other particles
in the vicinity of each particle is different. Thus these local
structures show multiple time-scale shape variations in gen-
eral.

Moreover, it should also be noted that the pulsation of
particles induces rotation of the local structures. This is one
example of the rotation with zero angular momentum in-
duced by the deformation of an object, which has been stud-
ied mathematically �21�. Here, the rotational velocities and
the directions depend on the differences among the pulsation
phases of the particles, as shown in the following simple
example.

Figure 5�d� shows the rotational motions of a cluster con-
sisting of three particles �i=0, 1, and 2� with K=0 and �o
=0.1. Here, the pulsation frequencies are always the same
because the numbers of other particles in the vicinity are the
same. When the pulsation phases of these particles, W0, W1,
and W2, are not the same, as seen at the right in Fig. 5�d�, the
cluster may rotate. Figure 5�e� shows the rotational velocity
of the cluster as a function of W2−W0 for W1−W0=4� /3.
�Note that Wi−Wj is temporally constant because the pulsa-
tion frequencies of these particles are always the same now.�
As shown in this figure, this rotation tends to be faster when
the pulsation phases of the particles disperse �22�.

From these facts, the local structures exhibit several time-
scale shape variations and rotations when K�4. Such mo-
tions induce the complex tug-of-war among the local struc-
tures. Then, destruction of the rods or the junctions �Fig.
5�f�� and shrinking of the voids �Fig. 5�g�� often occurs,
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FIG. 5. �a�–�c� Illustration of typical local structures. �d� The
rotational motions of a three-particle system �one of the particles is
filled to show it clearly� in cases where the pulsation phases of two
�white� particles are the same �left� and where those of all particles
are different �right�. �e� Rotational velocity �RV� as a function of the
pulsation phase difference between two of the particles �positive RV
indicates the clockwise rotation�. �f�, �g� Examples of the destruc-
tion of local structures �junctions� and void shrinking.
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which causes the emergence and growth of the branches in
the particle cluster. Thus for such small K, the branching
type networks appear due to the destruction of transient void-
type networks. Moreover, such a tug-of-war among local
structures also induces collisions between them, which create
new junctions. Then, the shapes of the branching-type net-
works vary in a nonstationary manner.

In this paper, the network structure formations of popula-
tions of mobile pulsating particles were studied. It was found
that a system consisting of particles whose pulsation fre-
quency depends on the number of other particles in the vi-
cinity shows some different network structure formations.

The presented model can also be considered as a model of
temporally evolving networks �3,12,13,15� if we regard the
junctions and the rods as the nodes and the links, respec-
tively. Unlike recent temporally evolving network models,
however, this model does not assume the existence of the
nodes and links explicitly. This model is a metadynamical
system that can realize the creation, annihilation, and varia-

tion of mesoscale structures like nodes and links by the mi-
croscale �particles� dynamics. The mathematical analysis of
such systems is an important issue for future study.

The creation and annihilation of nodes and links by the
interactions among them should play an important role in
networklike structure formation of cytoskeletons, tube mor-
phogenesis in Physarum plasmodium, etc. The presented
model should also provide some hints for the mechanical
aspects of the morphogenesis �8,9,19,20� of multicellular
systems. Of course, this model is too simple for the detailed
study of such real systems. More complex models in which
the states of the mobile elements are regulated by complex
inner chemical reactions and complex interactions like
chemotaxis, Notch-Delta-like interactions, etc. should be in-
vestigated in the future.
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